Existential risks are those that threaten the entire future of humanity. Many theories of value imply that even relatively small reductions in net existential risk have enormous expected value. Despite their importance, issues surrounding human-extinction risks and related hazards remain poorly understood.
FAIR USE NOTICE
FAIR USE NOTICE
A BEAR MARKET ECONOMICS BLOG
This site may contain copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available in an effort to advance understanding of environmental, political, human rights, economic, democracy, scientific, and social justice issues, etc. we believe this constitutes a ‘fair use’ of any such copyrighted material as provided for in section 107 of the US Copyright Law.
In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes. For more information go to: http://www.law.cornell.edu/uscode/17/107.shtml
If you wish to use copyrighted material from this site for purposes of your own that go beyond ‘fair use’, you must obtain permission from the copyright owner.
FAIR USE NOTICE FAIR USE NOTICE: This page may contain copyrighted material the use of which has not been specifically authorized by the copyright owner. This website distributes this material without profit to those who have expressed a prior interest in receiving the included information for scientific, research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107.
FAIR USE NOTICE FAIR USE NOTICE: This page may contain copyrighted material the use of which has not been specifically authorized by the copyright owner. This website distributes this material without profit to those who have expressed a prior interest in receiving the included information for scientific, research and educational purposes. We believe this constitutes a fair use of any such copyrighted material as provided for in 17 U.S.C § 107.
Unthinkable
as it may be, humanity, every last person, could someday be wiped from
the face of the Earth. We have learned to worry about asteroids and
supervolcanoes, but the more-likely scenario, according to Nick Bostrom,
a professor of philosophy at Oxford, is that we humans will destroy
ourselves.
Bostrom, who directs Oxford's Future of Humanity Institute, has argued
over the course of several papers that human extinction risks are
poorly understood and, worse still, severely underestimated by society. Some of these existential risks are fairly well known,
especially the natural ones. But
others are obscure or even exotic. Most worrying to Bostrom is the
subset of existential risks that arise from human technology, a subset
that he expects to grow in number and potency over the next century.
Despite his concerns about the risks posed to humans by technological
progress, Bostrom is no luddite. In fact, he is a longtime advocate of
transhumanism---the effort to improve the human condition, and even
human nature itself, through technological means. In the long run he
sees technology as a bridge, a bridge we humans must cross with great
care, in order to reach new and better modes of being. In his work,
Bostrom uses the tools of philosophy and mathematics, in particular
probability theory, to try and determine how we as a species might
achieve this safe passage. What follows is my conversation with
Bostrom about some of the most interesting and worrying existential
risks that humanity might encounter in the decades and centuries to
come, and about what we can do to make sure we outlast them. Some have argued that we ought to be directing our resources toward
humanity's existing problems, rather than future existential risks,
because many of the latter are highly improbable. You have responded by
suggesting that existential risk mitigation may in fact be a dominant
moral priority over the alleviation of present suffering. Can you
explain why?
Bostrom: Well
suppose you have a moral view that counts future people as being worth
as much as present people. You might say that fundamentally it doesn't
matter whether someone exists at the current time or at some future
time, just as many people think that from a fundamental moral point of
view, it doesn't matter where somebody is spatially---somebody isn't
automatically worth less because you move them to the moon or to Africa
or something. A human life is a human life.
If you have that moral point of view that future generations matter in
proportion to their population numbers, then you get this very stark
implication that existential risk mitigation has a much higher utility
than pretty much anything else that you could do. There are so many
people that could come into existence in the future if humanity survives
this critical period of time---we might live for billions of years, our
descendants might colonize billions of solar systems, and there could
be billions and billions times more people than exist currently.
Therefore, even a very small reduction in the probability of realizing
this enormous good will tend to outweigh even immense benefits like
eliminating poverty or curing malaria, which would be tremendous under
ordinary standards.
In the short term you
don't seem especially worried about existential risks that originate in
nature like asteroid strikes, supervolcanoes and so forth. Instead you
have argued that the majority of future existential risks to humanity
are anthropogenic, meaning that they arise from human activity. Nuclear
war springs to mind as an obvious example of this kind of risk, but
that's been with us for some time now. What are some of the more
futuristic or counterintuitive ways that we might bring about our own
extinction?
Bostrom: I
think the biggest existential risks relate to certain future
technological capabilities that we might develop, perhaps later this
century. For example, machine intelligence or advanced molecular
nanotechnology could lead to the development of certain kinds of weapons
systems. You could also have risks associated with certain advancements
in synthetic biology.
Of
course there are also existential risks that are not extinction risks.
The concept of an existential risk certainly includes extinction, but it
also includes risks that could permanently destroy our potential for
desirable human development. One could imagine certain scenarios where
there might be a permanent global totalitarian dystopia. Once again
that's related to the possibility of the development of technologies
that could make it a lot easier for oppressive regimes to weed out
dissidents or to perform surveillance on their populations, so that you
could have a permanently stable tyranny, rather than the ones we have
seen throughout history, which have eventually been overthrown.
And why shouldn't we be as worried about natural existential risks in the short term?
Bostrom: One
way of making that argument is to say that we've survived for over 100
thousand years, so it seems prima facie unlikely that any natural
existential risks would do us in here in the short term, in the next
hundred years for instance. Whereas, by contrast we are going to
introduce entirely new risk factors in this century through our
technological innovations and we don't have any track record of
surviving those.
Now
another way of arriving at this is to look at these particular risks
from nature and to notice that the probability of them occurring is
small. For instance we can estimate asteroid risks by looking at the
distribution of craters that we find on Earth or on the moon in order to
give us an idea of how frequent impacts of certain magnitudes are, and
they seem to indicate that the risk there is quite small. We can also
study asteroids through telescopes and see if any are on a collision
course with Earth, and so far we haven't found any large asteroids on a
collision course with Earth and we have looked at the majority of the
big ones already.
You have argued that
we underrate existential risks because of a particular kind of bias called
observation selection effect. Can you explain a bit more about that?
Bostrom: The
idea
of an observation selection effect is maybe best explained by first
considering
the simpler concept of a selection effect. Let's say you're trying to
estimate
how large the largest fish in a given pond is, and you use a net to
catch a
hundred fish and the biggest fish you find is three inches long. You
might be
tempted to infer that the biggest fish in this pond is not much bigger
than three
inches, because you've caught a hundred of them and none of them are
bigger than three inches. But if it turns out that your net could only
catch fish up to a
certain length, then the measuring instrument that you used would
introduce a
selection effect: it would only select from a subset of the domain you
were
trying to sample.
Now that's a kind of standard fact of statistics, and there
are methods for trying to correct for it and you obviously have to take that
into account when considering the fish distribution in your pond. An
observation selection effect is a selection effect introduced not by
limitations in our measurement instrument, but rather by the fact that all
observations require the existence of an observer.
This becomes important, for instance, in evolutionary
biology. For instance, we know that intelligent life evolved on Earth. Naively,
one might think that this piece of evidence suggests that life is likely to
evolve on most Earth-like planets.
But that would be to overlook an observation selection effect. For no matter how small the proportion
of all Earth-like planets that evolve intelligent life, we will find ourselves
on a planet that did. Our data point-that intelligent life arose on our
planet-is predicted equally well by the hypothesis that intelligent life is
very improbable even on Earth-like planets as by the hypothesis that
intelligent life is highly probable on Earth-like planets. When it comes to
human extinction and existential risk, there are certain controversial
ways that observation selection effects might be relevant.
How so?
Bostrom:
Well, one
principle for how to reason when there are these observation selection
effects
is called the self-sampling assumption, which says roughly that you
should
think of yourself as if you were a randomly selected observer of some
larger
reference class of observers. This assumption has a particular
application to
thinking about the future through the doomsday argument, which attempts
to show
that we have systematically underestimated the probability that the
human
species will perish relatively soon.
The basic idea involves comparing two different hypotheses
about how long the human species will last in terms of how many total
people
have existed and will come to exist. You could for instance have two
hypothesis: to pick an easy example imagine that one hypothesis is that a
total of 200 billion humans will have ever existed at the end of time,
and the other hypothesis
is that 200 trillion humans will have ever existed.
Let's say that initially you think that each of these
hypotheses is equally likely, you then have to take into account the
self-sampling assumption and your own birth rank, your position in the
sequence of people who have lived and who will ever live. We estimate
currently that there have, to date, been
100 billion humans. Taking that into account, you then get a probability
shift in favor of the smaller hypothesis, the hypothesis that only
200 billion humans will ever have existed. That's because you have to
reason that if
you are a random sample of all the people who will ever have existed,
the chance that
you will come up with a birth rank of 100 billion is much larger if
there are
only 200 billion in total than if there are 200 trillion in total. If
there are
going to be 200 billion total human beings, then as the 100 billionth of
those
human beings, I am somewhere in the middle, which is not so surprising.
But if
there are going to be 200 trillion people eventually, then you might
think that
it's sort of surprising that you're among the earliest 0.05% of the
people
who will ever exist. So you can see how reasoning with an observation
selection
effect can have these surprising and counterintuitive results. Now I
want to
emphasize that I'm not at all sure this kind of argument is valid; there
are some deep
methodological questions about this argument that haven't been resolved,
questions that I have written a lot about.
See I had understood observation selection effects in this context to
work somewhat differently. I had thought that it
had more to do with trying to observe the kinds of events that might
cause
extinction level events, things that by their nature would not be the
sort of
things that you could have observed before, because you'd cease to exist
after the initial observation. Is there a line of thinking to that
effect?
Bostrom: Well,
there's another line of thinking that's very similar to what you're describing that
speaks to how much weight we should give to our track record of survival. Human
beings have been around for roughly a hundred thousand years on this planet, so
how much should that count in determining whether we're going to be around another
hundred thousand years? Now there are a number of different factors that come
into that discussion, the most important of which is whether there are going to
be new kinds of risks that haven't existed to this point in human history---in
particular risks of our own making, new technologies that we might develop this
century, those that might give us the means to create new kinds of weapons or
new kinds of accidents. The fact that we've been around for a hundred
thousand years wouldn't give us much confidence with respect to those risks. But, to the extent that one were focusing on risks from nature, from asteroid
attacks or risks from say vacuum decay in space itself, or something like
that, one might ask what we can infer from this long track record of survival.
And one might think that any species anywhere will think of themselves as
having survived up to the current time because of this observation selection
effect. You don't observe yourself after you've gone extinct, and so that complicates the analysis for certain kinds of risks.
A few years ago I wrote a paper together with a physicist at
MIT named Max Tegmark, where we looked at particular risks like vacuum decay, which is
this hypothetical phenomena where space decays into a lower energy state, which
would then cause this bubble propagating at the speed of light that would destroy
all structures in its path, and would cause a catastrophe that no observer
could ever see because it would come at you at the speed of light, without
warning. We were noting that it's somewhat problematic to apply our
observations to develop a probability for something like that, given this
observation selection effect. But we found an indirect way of looking at
evidence having to do with the formation date of our planet, and comparing it
to the formation date of other earthlike planets and then using that as a kind
of indirect way of putting a bound on that kind of risk. So that's another way
in which observation selection effects become important when you're trying to estimate
the odds of humanity having a long future.
Nick Bostrom is the director of the Future of Humanity Institute at Oxford.
One possible strategic
response to human-created risks is the slowing or halting of our technological
evolution, but you have been a critic of that view, arguing that the permanent
failure to develop advanced technology would itself constitute an existential
risk. Why is that?
Bostrom: Well,
again I think the definition of an existential risk goes beyond just
extinction, in that it also includes the permanent destruction of our potential
for desirable future development. Our permanent failure to develop the sort of
technologies that would fundamentally improve the quality of human life would
count as an existential catastrophe. I think there are vastly better ways of
being than we humans can currently reach and experience. We have fundamental
biological limitations, which limit the kinds of values that we can instantiate
in our life---our lifespans are limited, our cognitive abilities are limited,
our emotional constitution is such that even under very good conditions we
might not be completely happy. And even at the more mundane level, the world
today contains a lot of avoidable misery and suffering and poverty and disease,
and I think the world could be a lot better, both in the transhuman way, but
also in this more economic way. The failure to ever realize those much better modes
of being would count as an existential risk if it were permanent.
Another reason I haven't emphasized or advocated the
retardation of technological progress as a means of mitigating existential risk
is that it's a very hard lever to pull. There are so many strong forces pushing
for scientific and technological progress in so many different domains---there
are economic pressures, there is curiosity, there are all kinds of institutions
and individuals that are invested in technology, so shutting it down is a very
hard thing to do.
What technology, or
potential technology, worries you the most?
Bostrom: Well, I
can mention a few. In the nearer term I think various developments in biotechnology
and synthetic biology are quite disconcerting. We are gaining the ability to
create designer pathogens and there are these blueprints of various disease
organisms that are in the public domain---you can download the gene sequence
for smallpox or the 1918 flu virus from the Internet. So far the ordinary
person will only have a digital representation of it on their computer screen,
but we're also developing better and better DNA synthesis machines, which are machines
that can take one of these digital blueprints as an input, and then print out
the actual RNA string or DNA string. Soon they will become powerful enough
that they can actually print out these kinds of viruses. So already there you
have a kind of predictable risk, and then once you can start modifying these
organisms in certain kinds of ways, there is a whole additional frontier of
danger that you can foresee.
In the longer run, I think artificial intelligence---once it
gains human and then superhuman capabilities---will present us with a major
risk area. There are also different kinds of population control that worry me, things
like surveillance and psychological manipulation pharmaceuticals.
In one of your papers
on this topic you note that experts have estimated our total existential risk
for this century to be somewhere around 10-20%. I know I can't be alone in
thinking that is high. What's driving that?
Bostrom: I think
what's driving it is the sense that humans are developing these very potent
capabilities---we are doing unprecedented things, and there is a risk that
something could go wrong. Even with nuclear weapons, if you rewind the tape you
notice that it turned out that in order to make a nuclear weapon you had to
have these very rare raw materials like highly enriched uranium or plutonium,
which are very difficult to get. But suppose it had turned out that there was
some technological technique that allowed you to make a nuclear weapon by
baking sand in a microwave oven or something like that. If it had turned out
that way then where would we be now? Presumably once that discovery had been
made civilization would have been doomed.
Each time we make one of these new discoveries we are
putting our hand into a big urn of balls and pulling up a new ball---so far
we've pulled up white balls and grey balls, but maybe next time we will pull
out a black ball, a discovery that spells disaster. At the moment we have no
good way of putting the ball back into the urn if we don't like it. Once a
discovery has been published there is no way of un-publishing it.
Even with nuclear weapons there were close calls. According
to some people we came quite close to all out nuclear war and that was only in
the first few decades of having discovered the new technology, and again it's a
technology that only a few large states had, and that requires a lot of
resources to control---individuals can't really have a nuclear arsenal.
The influenza virus, as viewed through an electron microscope.
Can you explain the
simulation argument, and how it presents a very particular existential risk?
Bostrom: The
simulation argument addresses whether we are in fact living in a simulation as
opposed to some basement level physical reality. It tries to show that at least
one of three propositions is true, but it doesn't tell us which one. Those
three are:
1) Almost all civilizations like ours go extinct
before reaching technological maturity.
2) Almost all technologically mature civilizations
lose interest in creating ancestor simulations: computer simulations detailed
enough that the simulated minds within them would be conscious.
3) We're almost certainly living in a computer
simulation.
The full argument requires sophisticated probabilistic
reasoning, but the basic argument is fairly easy to grasp without resorting to
mathematics. Suppose that the first proposition is false, which would mean that
some significant portion of civilizations at our stage eventually reach
technological maturity. Suppose that the second proposition is also false,
which would mean that some significant fraction of those (technologically mature) civilizations retain
an interest in using some non-negligible fraction of their resources for the
purpose of creating these ancestor simulations. You can then show that it would
be possible for a technologically mature civilization to create astronomical
numbers of these simulations. So if this significant fraction of civilizations
made it through to this stage where they decided to use their capabilities to
create these ancestor simulations, then there would be many more simulations
created than there are original histories, meaning that almost all observers
with our types of experiences would be living in simulations. Going back to the
observation selection effect, if almost all kinds of observers with our kinds
of experiences are living in simulations, then we should think that we are
living in a simulation, that we are one of the typical observers, rather than
one of the rare, exceptional basic level reality observers.
The connection to existential risk is twofold. First, the
first of those three possibilities, that almost all civilizations like ours go
extinct before reaching technological maturity obviously bears directly on how
much existential risk we face. If proposition 1 is true then the obvious
implication is that we will succumb to an existential catastrophe before
reaching technological maturity. The other relationship with existential risk
has to do with proposition 3: if we are living in a computer simulation then
there are certain exotic ways in which we might experience an existential
catastrophe which we wouldn't fear if we are living in basement level physical
reality. The simulation could be shut off, for instance. Or there might be
other kinds of interventions in our simulated reality.
Now that does seem to
assume that a technologically mature civilization would have an interest
in creating these simulations in the first place. To say that these
civilizations might "lose interest" implies some interest to begin
with.
Bostrom: Right
now there are certainly a lot of people that, if they could, would be very
happy to do this for all kinds of reasons---people might do it as a sort of
scientific study, they might do it for entertainment, for art. Already you have
people building these virtual worlds in computer games, and the more realistic
they can make them the happier they are. You could have people pursuing virtual
historical tourism, or people who want to do this just because it could be
done. So I think it's safe to say that people today, had they the capabilities,
would do it, but perhaps with a certain level of technological maturity people may
lose interest in this for one reason or another.
Your work reminds me a
little bit of the film 'Children of Men,' which depicted a very particular
existential risk: species-wide infertility. What are some of the more novel
treatments you've seen of this subject in mainstream culture?
Bostrom: Well,
the Hollywood renditions of existential risk scenarios are usually quite bad.
For instance, the artificial intelligence risk is usually represented by an
invasion of a robot army that is fought off by some muscular human hero
wielding a machine gun or something like that. If we are going to go extinct
because of artificial intelligence, it's not going to be because there's this
battle between humans and robots with laser eyes. A lot of the stories you see
in fiction or in films are subject to the good story bias; there are
constraints on what makes for a good story. Usually there has to be a
protagonist and the thing you're battling has to be evil, and there are going
to be ups and downs, and the humans prevail in the end. So there's a filter for
the scenarios that you're going to see in media representations.
Aldous Huxley's Brave New World is interesting in that it
created a vivid depiction of a scenario in which humans have been biologically
and socially engineered to fit into a dystopian social structure, and it shows how
that could be very bad. But on the whole I think the general point I would make
is that there isn't a lot of good literature on existential risk, and that one
needs to think of these things not in terms of vivid scenarios, but rather in
more abstract terms.
Last week I
interviewed Cary Fowler with the Svalbard Global Seed Vault. His project is a
technology that might be interpreted as looking to limit existential risk. Are
there other technological (as opposed to social or political) solutions that
you see on the horizon?
Bostrom: Well
there are things that one can do, some that would apply to particular risks and
others that would apply to a broader spectrum of risk. With particular risks,
for instance, one could invest in technologies to hasten the time it takes to
develop a new vaccine, which would also be very valuable to have for other
reasons unrelated to existential risk.
With regard to existential risk stemming from artificial
intelligence, there is some work that we are doing now to try and think about
different ways of solving the control problem. If one day you have the ability
to create a machine intelligence that is greater than human intelligence, how
would you control it, how would you make sure it was human-friendly and safe? There
is work that can be done there.
With asteroids there has been this Spaceguard project that
maps out different asteroids and their trajectories, that project is certainly
motivated by concerns about existential risks, and it costs only a couple of
million dollars per year, with most of the funding coming from NASA.
Then there are more general-purpose things you can do. You
could imagine building some refuge, some bunker with a very large supply of
food, where humans could survive for a decade or several decades if there were
a large impact of some kind. It would be a lot cheaper and easier to do that on
Earth than it would be to build a space colony, which some people
have proposed.
But to me the most important thing to do is more analysis,
specifically analysis to identify the biggest existential risks and the types
of interventions that would be most likely to mitigate those risks.
A telescope used to track asteroids at the Spaceguard Centre in the United Kingdom.
I noticed that you
define an existential risk as potentially bringing about the premature
extinction of Earth-originating intelligent life. I wondered what you mean by
premature? What would count as a mature extinction?
Bostrom: Well,
you might think that an extinction occurring at the time of the heat death of
the universe would be in some sense mature. There might be fundamental physical
limits to how long information processing can continue in this universe of
ours, and if we reached that level there would be extinction, but it would be
the best possible scenario that could have been achieved. I wouldn't count that
as an existential catastrophe, rather it would be a kind of success scenario.
So it's not necessary to survive infinitely long, which after all might be
physically impossible, in order to have successfully avoided existential risk.
In considering the long-term development of humanity, do you put much stock in specific schemes
like the Kardashev Scale, which plots the advancement of a civilization
according to its ability to harness energy, specifically the energy of its
planet, its star, and then finally the galaxy? Might there be more to human
flourishing than just increasing mastery of energy sources?
Bostrom: Certainly
there would be more to human flourishing. In fact I don't even think that
particular scale is very useful. There is a discontinuity between the stage
where we are now, where we are harnessing a lot of the energy resources of our
home planet, and a stage where we can harness the energy of some increasing
fraction of the universe like a galaxy. There is no particular reason to think
that we might reach some intermediate stage where we would harness the energy
of one star like our sun. By the time we can do that I suspect we'll be able to
engage in large-scale space colonization, to spread into the galaxy and then
beyond, so I don't think harnessing the single star is a relevant step on the
ladder.
If I wanted some sort of scheme that laid out the stages of
civilization, the period before machine super intelligence and the period after
super machine intelligence would be a more relevant dichotomy. When you look at
what's valuable or interesting in examining these stages, it's going to be what
is done with these future resources and technologies, as opposed to their structure. It's possible that the
long-term future of humanity, if things go well, would from the outside look
very simple. You might have Earth at the center, and then you might have a
growing sphere of technological infrastructure that expands in all directions
at some significant fraction of the speed of light, occupying larger and larger
volumes of the universe---first in our galaxy, and then beyond as far as is
physically possible. And then all that ever happens is just this continued
increase in the spherical volume of matter colonized by human descendants, a growing
bubble of infrastructure.
Everything would then depend on what was happening inside
this infrastructure, what kinds of lives people were being led there, what
kinds of experiences people were having. You couldn't infer that from the
large-scale structure, so you'd have to sort of zoom in and see what kind of
information processing occurred within this infrastructure.
It's hard to know what that might look like,
because our human experience might be just a small little crumb of what's possible.
If you think of all the different modes of being, different kinds of feeling and experiencing,
different ways of thinking and relating, it might be that human nature
constrains us to a very narrow little corner of the space of possible modes of
being. If we think of the space of possible modes of being as a large
cathedral, then humanity in its current stage might be like a little cowering infant
sitting in the corner of that cathedral having only the most limited sense of
what is possible.
No comments:
Post a Comment